nman

CIRERTT

mDolphin Plug-in

Programming Guide

Version 2.0

For mDolphin Version 2.0

Beijing Feynman Software Technology Co. Ltd.
March, 2008

mDolphin Plug-in Programming Guide V1.0

CHIERTF

Contents

1ADbOUL This GUIdE. .. .oiiii i eaaes 1
3 Y o0 o1 = 1

B YU e =T o ¥ o = 1
2AD0UL PlUG NS i i e e 2
2.1HTML Tags Used to Display Plug-ins........iiiiiiiiiii i i eaeeees 2
2.1.1About the object Tag...cviiiiii i e e 2
2.1.2About the embed tag ...cciiiiiiii i e 3
3DeVveloping PlUg-iNS. ... i i 5
3.1Identifying @ PlUug-=in ..oooiiiiiiiiiii i 5
3.2Register and UnRegister PIUg-iN......coviiiiiiiii i i e eeenas 5
3.2.1Register a Plug-in to mDoIphin.......oviiii i e 5
3.2.2UnRegister a Plug-in to mDolphin.......cooiiiiiiiii e 5
3.3Initializing and Destroying Plug-ins.........coiiii i i e eees 6
3.3.1 Plug-in initializationcoooriiii e 6

3.3.2 Creating a plug-in iNStanCe ..ottt e e e e 7

3.3.3 Destroying a plug-in instancCe ... 8

3.3.4 ShUEAOWN Luiiiii i e 9
3.4Drawing PlUG-inS. . it 10
3.5Allocating and Freeing MemoOry ...ooviiiiiiiiiii i ie e aeas 10
3.6Implementing Stream s ..ovviirii i e s 11
3.6.1 Sending a stream from the browser to a Plug-inccoovviiiiiiiinn 11
3.7Handling URLS ... 12
3.7.1 Retrieving data from @ URL ...couiiiiiiiiii i it 12

3.7.2 POSEING URLS .t e e et s s e et e e 12
4Plug-in API Reference Tables......oovviiiiiiiiiii i i i e 14
4.1Adapted Netscape Plug-in API FUNCLIONS.....iiiiiiii i 14
4.1.11Initialization and destruction functions.............oiiiiiiiiii i 14
4.1.2Drawing fUNCHIONS ..ttt e e e 16
4.1.3Stream fUNCLIONS ..oiii i 18
4.1.4URL fUNCHIONS 1iiiiiii i s 21
4.1.5Memory fUNCEIONS L.t e e e e e e e 24
4.1.6ULIlItY fUNCHIONS oo e 25

mDolphin Plugin Programming Guide V1.0
CH2EL1F

4.1.7Java communication functionscccooiiiiiiiiiiiii 26

L L W= F=] o 1 26
4.2.1mdolphin_register_plugin.....oouiiiiii i i i 26
4.2.2mdolphin_unregister_plugin.....c.cooiiiiiiii i i 26
4.2.3mdolphin_get_plugin_COUNTS...iii ittt i e e e ees 27
4.2.4mdolphin_get_plugin_from_mimetype.....ccooiiiiiiiiiii i 27
4.2.5mdolphin_get_plugin_info......coiiiiiiiiii s 27
4.2.6mdolphin_get_plugin_info_by_indeX...........oooiii e 28

S 1o o B ot B = 28
4. 3. 1N PBYLERANGE. ..ttt e 28
4.3, 2NPEMbBEdPIiNt. .. 28

4. 3. 3N PFU P I Nt e 28

T T o 28

2 Y V1 o o o T 29

4.3 6NPRECE L .utiiii i s 29
4.3.7NPSavedDataccciiiii i 29

4.3 8NPSO rEaM . . 29

4.3 NP WINAOW . ittt e 31
SHello World PlUg-in ... i i 33
5.1Default_Plug-in DeMO oot i i e i e e 33
5.2 Implementing Hello World Plug-in........ooooiiiiiiiiii i eeees 33
5.2.1Modifing Project Nameoooiiiiiiiii e 33
5.2.2Define Plug-in Name and MIME Typeooiiiiiiiiiii i 33
5.2.3Implementing Hello World PIug-inuuiiiiiiiiiiii e eeeeeeees 34
5.3Building and Installing Plug-inoiiiiiiiiiii i i 35
5.3.1Building Hello World PlUg-=in ..coiuuiiiiiiiii i i eiin e 35
5.3.2INstalling PlUgG-in oo e e s 35
5.4Write Test Html for Hello World Plug-inc.cooiiiiiiviii i 36

II

mbDolphin Plug-in Programming Guide V1.0

CHIERTF

1 About This Guide

This guide explains how to develop plug-ins for mDolphin, using the Browser Plug-in API.

The Browser Plug-in API was introduced in chapter 4.

1.1Scope

This document contains the following information:

[] Chapter 1 provides an introduction to this document, including its scope,

intended audience.
Chapter 2 contains basic information about plug-ins.

B Chapter 3 provides instructions for developing a plug-in

application.
Chapter 4 describes the functions and structures of the Browser Plug-in API,

grouped by functionality.
B Chapter 5 describes how to implement a hello world plug-in.

1.2Audience
This guide is intended for developers who wish to write plug-in applications for the

mDolphin. The reader should be familiar with the MiniGUI programming and the linux

operating system.

mDolphin Plugin Programming Guide V1.0
CHERTF

2 About Plug-ins

A plug-in is an add-on program that extends the capabilities of a browser. For example,
plug-ins can enable users to view pdf files and flash files, or to play audiotapes or movies

on a browser. The Browser Plug-in API enables developers to create plug-ins that can do
the following:

Register one or more MIME types.

Draw inside a browser window.

Receive key and mouse events.

Obtain data from the network using URIs.

Post data to URlIs.

Communicate with Javascript from native code.

2.1HTML Tags Used to Display Plug-ins

HTML tags determine the way a plug-in is displayed on a Web page. The following HTML

tags invoke the plug-in and determine its display mode:

B object.

B embed.

2.1.1About the object tag

The object tag specifies the attributes of an object, such as a plug-in, to be embedded in

a Web page to be viewed with the browser. An example of an object tag is as follows:

<object
data="dataLocation"
type="MIMEType"
align="alignment"
height="pixHeight"
width="pixwWwidth"
id="name"
>
<param name="namel" value="valuel" />
<param name="name2" value="value2" />
</object>
where:
data is the location of the object's data
This is a mandatory attribute.
type is the MIME type of the plug-in

This is a mandatory attribute.

mbDolphin Plug-in Programming Guide V1.0

Gk
align is the left, right, top, or bottom alignment of the plug-in on
theHTML page.
This is an optional attribute.
height is the vertical size, in pixels, of the plug-in on the HTML page
This is an optional attribute.
width is the horizontal size, in pixels, of the plug-in on the HTML page

This is an optional attribute.

id is the name of the plug-in
This is an optional attribute.

param name is the name of a parameter required by the plug-in
This is an optional attribute.

value is the initial value of the parameter required by the plug-in
This is an optional attribute.

2.1.2About the embed tag

The embed tag specifies the attributes of a plug-in to be embedded in a Web page to be

viewed with the browser. An example of an embed tag is as follows:

<embed
src="location"
type="MIMEtype"
align="1left" |"right" |"top" |"bottom"
border="borderWidth"
frameborder="no"
height="height"
width="width"
units="units"
hspace="horizMargin"
vspace="vertMargin"
id="name"
namel="valuel"
name2="value2"

>
</embed>

where:

src is the URL location of the file to run.
This is a mandatory attribute.

type is the MIME type of the plug-in needed to run the file.
This is a mandatory attribute.

align is the left, right, top, or bottom alignment of the plug-in on
the HTML page.
This is an optional attribute.

border is the width, in pixels, of the border surrounding the plug-in
on the HTML page
This creates a picture frame effect.
This is an optional attribute.

frameborder specifies whether or not the frames on the HTML page
appear with borders separating themselves from each other
Values: yes or no
This is an optional attribute.

height is the vertical size of the plug-in on the HTML page Default
unit: pixels

mDolphin Plugin Programming Guide V1.0

CHIERTF

This is an optional attribute.

width is the horizontal size of the plug-in on the HTML page Default
unit: pixels
This is an optional attribute.

units is the unit used for the sizes of the height and width
For example: inches, cm, mm, point size, or pixels.
This is an optional attribute.

hspace is the width, in pixels, of an invisible border to the left and
right of the plug-in on the HTML page
This creates blank space on the left and right sides of the
plug-in object.
This is an optional attribute.

vspace is the width, in pixels, of an invisible border above and
below the plug-in on the HTML page
This creates blank space above and below the plug-in object.
This is an optional attribute.

id is the name of the plug-in
This is an optional attribute.

An embed tag must contain either the src attribute or the type attribute in order for the

plug-in to load. The browser uses either the value of the type attribute or the suffix of the

file name of the source to determine which plug-in to use. For example:

<embed src="doh.wav" width="100" height="40" type="audio/wav">
T</embed>.

mbDolphin Plug-in Programming Guide V1.0

CHIER 1T

3 Developing Plug-ins

This chapter provides instructions for developing a plug-in application. A sample plug-in

application may be found in source of “mdolphin/plugin_demos/default_plugin” directory

3.1Identifying a Plug-in
The browser identifies the following information for each mDolphin plug-in:
[] Plug-in name.
u MIME type supported.
| MIME file extensions supported.
u MIME type description.
When the browser needs to display data of a particular MIME type, it finds a plug-in
registered to that type and loads the plug-in.

3.2Register and UnRegister Plug-in

3.2.1Register a Plug-in to mDolphin

In mDolphin, all Plug_ins should be registered by the following function.

HPGN mdolphin register plugin(const PLUGIN REGISTER * RegPgn);

Before calling mdolphin_register_plugin, you should fill the PLUGIN_REGISTER struct

with the plug_in information.

typedef struct PLUGIN_ REGISTER({
/** Plugin's name. */
char name [MAX LEN PLUGINNAME] ;
/** Plugin's mime. */
char mimetype [MAX LEN MIMETYPE];
/** Plugin's suffixes. */
char suffixes[MAX LEN SUFFIXES];
/** Plugin's initialize function. (required) */
NP InitializeProcPtr init;
/** Plugin's shutdown function. (required)*/
NP_ShutdownProcPtr shutdown;

/** Plugin's get mime description function. (can be NULL) */
NP GetMIMEDescriptionProcPtr desc;
/** Plugin's get value function. (can be NULL)*/

NP GetValueProcPtr getval;
}PLUGIN REGISTER;

3.2.2UnRegister a Plug-in to mDolphin

mDolphin provides the following function to unregister a plug_.in.

void mdolphin unregister plugin (HPGN plugin);

mDolphin Plugin Programming Guide V1.0

CHLEK AT
Note: if you want to unregister a specific MimeType plug_in, you can use the following

function to get the plug_in's HPGN. Then call mdolphin_unregister_plugin.

HPGN mdolphin get plugin from mimetype (const char* mimeType) ;

3.3Initializing and Destroying Plug-ins

This section describes the initialization and destruction of Netscape mDolphin plug-in

applications.

3.3.1 Plug-in initialization

When a Netscape mDolphin plug-in is initialized, the browser saves the following data:
| Plug-in name.
[] MIME type.

[| MIME file extension.

The browser passes a table of function pointers to the plug-in. This table is an allocated
but uninitialized structure that contains the API that the plug-in provides to the browser.
The plug-in fills out this table during the initialization call. The following code fragment

demonstrates the implementation of the InitializeFuncs function within a plug-in.

NPError P NAME (NP _Initialize) (NPNetscapeFuncs* nsTable, NPPluginFuncs* pluginFuncs)
{

NPError err = NPERR NO ERROR;

/* validate input parameters */

if ((nsTable == NULL) || (pluginFuncs == NULL))

err = NPERR INVALID FUNCTABLE ERROR;

/*

* Copy all the fields of Netscape function table into our

* copy so we can call back into Netscape later. Note that

* we need to copy the fields one by one, rather than assigning

* the whole structure, because the Netscape function table

* could actually be bigger than what we expect.

*/

if (err == NPERR NO ERROR) {
P NAME (gNetscapeFuncs) .size = nsTable->size;
P NAME (gNetscapeFuncs) .version = nsTable->version;
P _NAME (gNetscapeFuncs) .geturlnotify = nsTable->geturlnotify;
P_NAME (gNetscapeFuncs) .geturl = nsTable->geturl;
P NAME (gNetscapeFuncs) .posturlnotify = nsTable->posturlnotify;
P NAME (gNetscapeFuncs) .posturl = nsTable->posturl;
P NAME (gNetscapeFuncs) .requestread = nsTable->requestread;
P NAME (gNetscapeFuncs) .newstream = nsTable->newstream;
P NAME (gNetscapeFuncs) .write = nsTable->write;
P _NAME (gNetscapeFuncs) .destroystream = nsTable->destroystream;
P NAME (gNetscapeFuncs) .status = nsTable->status;
P NAME (gNetscapeFuncs) .uagent = nsTable->uagent;
P_NAME (gNetscapeFuncs) .memalloc = nsTable->memalloc;
P_NAME (gNetscapeFuncs) .memfree = nsTable->memfree;
P NAME (gNetscapeFuncs) .memflush = nsTable->memflush;
P NAME (gNetscapeFuncs) .reloadplugins = nsTable->reloadplugins;
#ifdef OJI
P NAME (gNetscapeFuncs) .getJavaEnv nsTable->getJavaEnv;

mbDolphin Plug-in Programming Guide V1.0

CHLEK AT
P NAME (gNetscapeFuncs) .getJavaPeer = nsTable->getJavaPeer;
#endif
P _NAME (gNetscapeFuncs) .getvalue = nsTable->getvalue;
P _NAME (gNetscapeFuncs) .setvalue = nsTable->setvalue;
P NAME (gNetscapeFuncs) .invalidaterect = nsTable->invalidaterect;
P NAME (gNetscapeFuncs) .invalidateregion = nsTable->invalidateregion;
P_NAME (gNetscapeFuncs) . forceredraw = nsTable->forceredraw;
P NAME (gNetscapeFuncs) .pushpopupsenabledstate = nsTable-
>pushpopupsenabledstate;
P_NAME (gNetscapeFuncs) .poppopupsenabledstate = nsTable-
>poppopupsenabledstate;
P_NAME(gNetscapeFuncs).enumerate = nsTable->enumerate;
/*
* Set up the plugin function table that Netscape will use to
* call us. Netscape needs to know about our version and size
* and have a UniversalProcPointer for every function we
* implement.
*/
pluginFuncs->version = (NP_VERSION MAJOR << 8) + NP _VERSION MINOR;
pluginFuncs->size = sizeof (NPPluginFuncs) ;
pluginFuncs->newp = NewNPP NewProc(P NAME (Private New));
pluginFuncs->destroy = NewNPP DestroyProc(P_NAME (Private Destroy));
pluginFuncs->setwindow = NewNPP SetWindowProc(P NAME (Private SetWindow));
pluginFuncs->newstream = NewNPP NewStreamProc(P NAME (Private NewStream));
pluginFuncs->destroystream =
NewNPP_DestroyStreamProc(P _NAME (Private DestroyStream));
pluginFuncs->asfile =
NewNPP_StreamAsFileProc(P_NAME (Private_ StreamAsFile));
pluginFuncs->writeready =
NewNPP WriteReadyProc(P _NAME (Private WriteReady));
pluginFuncs->write = NewNPP WriteProc(P _NAME (Private Write));
pluginFuncs->print = NewNPP PrintProc(P_NAME (Private Print));
pluginFuncs->event = NewNPP_HandleEventProc(P_NAME (Private HandleEvent)
) i
pluginFuncs->urlnotify = NewNPP URLNotifyProc(P NAME (Private URLNotify));
pluginFuncs->getvalue = NewNPP_GetValueProc(P_NAME (NP_GetValue));
pluginFuncs->setvalue = NewNPP SetValueProc(P NAME (NP SetValue));
#ifdef OJI
pluginFuncs->javaClass = NULL;
#endif
P_NAME (pluginLoadCount) ++; //add the counts of the load
if (P_NAME (pluginLoadCount) > 1)
return err;
err = P _NAME (NPP Initialize) ();
}
return err;
}
/// This C++ function gets called once when the plugin is loaded,
/// regardless of how many instantiations there is actually playing
/// movies. So this is where all the one time only initialization
/// stuff goes.
NPError
P _NAME (NPP_Initialize) ()
{
//here you can write your codes, when plug-in initialization
return NPERR NO_ ERROR;

3.3.2 Creating a plug-in instance

The browser calls the NPP_New function to create a plug-in instance. Instance- specific
private data can be allocated at this time. The following code example shows how to

create a plug-in instance.

// here the plugin creates a plugin instance object which '

7

mDolphin Plugin Programming Guide V1.0

AT

// will be associated with this newly created NPP instance and
// will do all the necessary Jjob
NPError P NAME (NPP_New) (NPMIMEType pluginType, NPP instance, uintlé mode, intlé argc,
char* argn[], char* argv[], NPSavedData* saved)
{
if (instance == NULL)
return NPERR INVALID INSTANCE ERROR;

NPError rv = NPERR NO ERROR;
// create a new plugin instance object

// initialization will be done when the associated window is ready
mgPluginCreateData ds;

ds.instance = instance;
ds.type = pluginType;
ds.mode = mode;
ds.argc = argc;
ds.argn = argn;
ds.argv = argv;
ds.saved = saved;

P NAME (mgPluginInstanceBase) * plugin = P_NAME (NS NewPluginInstance) (&ds);
if (plugin == NULL)
return NPERR OUT OF MEMORY ERROR;

// associate the plugin instance object with NPP instance
instance->pdata = (void *)plugin;
return rv;

}

/// Constructor

P NAME (mgPluginInstance) :: P_NAME (mgPluginInstance) (mgPluginCreateData* data)
: _instance (data->instance)

, m_hWnd (0)

{

//here you can write your codes, when Creating a plug-in instance

}

3.3.3 Destroying a plug-in instance
The browser calls the NPP_Destroy function to destroy a plug-in instance. The browser
application calls the NPP_Destroy function when the user performs any of the following
actions:
u Navigates away from the page containing the instance.

B Quits the application.

If this is the last instance created by a plug-in, the browser calls the NPP_Shutdown
function. It is important that the plug-in developer deletes all the resources, such as the
memory, files, and sockets allocated by the browser (such as streams) before calling the
NPP_Destroy function. NPP_Destroy does not track or delete browser-created objects.

The following code example shows how a plug-in instance is deleted.

NPError P _NAME (NPP_Destroy) (NPP instance, NPSavedData** /*save*/)
{

if (instance == NULL)
return NPERR INVALID INSTANCE ERROR;

NPError rv = NPERR NO ERROR;

P NAME (mgPluginInstanceBase) * plugin = (P _NAME (mgPluginInstanceBase) *)instance-

>pdata;

mbDolphin Plug-in Programming Guide V1.0

AT

if (plugin != NULL)
P NAME (NS DestroyPluginInstance) (plugin);

return rv;

}

/// Destructor
P _NAME (mgPluginInstance):: ~P NAME (mgPluginInstance) ()
{

//here you can write your codes, when Destroying a plug-in instance

}

3.3.4 Shutdown

The NPP_Shutdown function does the following:
B Informs the plug-in that its library is about to be unloaded.

B Gives the plug-in a chance to perform closing tasks such as:

o Cancel any outstanding 1/0 requests
o Delete threads it created

o Free any memory it allocated

This function is not called if any existing plug-in instances or plug-in stream instances are
open. All plug-in data should be deleted before this call is made. This call is useful when
data allocated by the NPP_Initialize function needs to be cleaned up. The following code

shows an example of the implementation of the NPP_Shutdown function.

/*

* NP Shutdown [optional]

* - Netscape needs to know about this symbol.

* - It calls this function after looking up its symbol after
* the last object of this kind has been destroyed.

*

*/

NPError

P_NAME (NP_Shutdown) (void)

{
NPError err = NPERR NO ERROR;

PLUGINDEBUGSTR ("NP_Shutdown") ;

P_NAME (pluginLoadCount) --; //sub the counts of the load
if (P_NAME (pluginLoadCount) == 0)
P NAME (NPP_Shutdown) ()

return err;

}

/// This C++ function gets called once when the plugin is being
/// shutdown, regardless of how many instantiations actually are
/// playing movies. So this is where all the one time only

/// shutdown stuff goes.

void

P_NAME (NPP_Shutdown) ()

{

//here you can write your codes, when NPP_Shutdown plug-in

}

mDolphin Plugin Programming Guide V1.0

AT

3.4Drawing Plug-ins

In mDolphin, the plug_in application is like MiniGUI application, and supports all the

MiniGUI events, so you can draw the plug_in on a Web page, like drawing in MiniGUI.

intl6 P_NAME (mgPluginInstance) ::HandleEvent (HWND hWnd, int message, WPARAM wParam, LPARAM
1Param)

{

switch (message) {
case MSG_PAINT:
RECT rect;

GetClientRect (hWnd, &rect);

HDC hdc;

hdc = BeginPaint (hWnd) ;

DrawText (hdc, "not find the useable plugins -- default plugin ",

-1, &rect, DT CENTER);
EndPaint (hWnd, hdc):;
return 1;

case MSG_CREATE:
m_hWnd = hWnd;
break;

}
return 0; //return 1 : show the plugin handled this message
//return 0 : show the plugin not handled this message

3.5Allocating and Freeing Memory

The plug-in calls the NPN_MemAlloc function to dynamically allocate a specified amount
of memory. The plug-in calls the NPN_MemFree function to de-allocate a block of

memory.
/**

* memAlloc and memFree are implemented by the browser.

* memFlush has an empty implementation in the browser and does
* nothing when the plug-in calls this function.

=/

void P_NAME (mgPluginInstance) : :TestMemory ()

{

void* pMem = NULL;
int memLeft = 0;

// Alloc a zero memory size
pMem = P NAME (NPN MemAlloc) (0);
// Free the memory

P NAME (NPN MemFree) (pMem) ;

// Alloc a small memory size

pMem = P NAME (NPN MemAlloc) (2000);
// Free the small memory

P NAME (NPN_MemFree) (pMem) ;

// Alloc a large memory size

pMem = P NAME (NPN MemAlloc) (2000000000) ;

// Flush the memory, this function should do nothing
memLeft = P_NAME (NPN_MemFlush) (2000000000) ;

// Free the large memory

P NAME (NPN_MemFree) (pMem) ;

10

mbDolphin Plug-in Programming Guide V1.0

CH2EL1F
3.6Implementing Streams

Streams are objects that represent data generated from a URL, or data sent by a plug-in
without an associated URL. Streams can be produced by the browser and consumed by a
plug-in instance, or produced by a plug-in instance and consumed by the browser. A
stream object has an associated MIME type, which identifies the format of the data in the
stream. Each stream object is associated with a single plug-in, and a plug-in can hold

multiple stream objects.

3.6.1 Sending a stream from the browser to a Plug-in

The browser performs the following tasks when sending a data stream to the plug-in:

B 1. Creates a stream and informs the plug-in.
To inform a plug-in when a new stream is created, the browser calls the NPP_NewStream
function. This function also determines which mode the browser should use to send data

to the plug-in.

The browser can create a stream for the following types of data:

o File specified in the src attribute of the embed tag
o Datafile

o Full-page instance

B 2. Finds out from the plug-in how much data it can accept

After calling the NPP_NewStream function and before writing data to the plug- in, the
browser calls the NPP_WriteReady function to determine the maximum number of bytes
that the plug-in can accept. This function allows the browser to send only as much data to
the plug-in as it can handle at one time, and it helps both the browser and the plug-in to
use their resources efficiently.

B 3. Writes data to the stream object

The browser pushes data into the stream by using a series of calls to the
NPP_WriteReady and the NPP_Write functions. The NPP_Write function returns the
number of bytes consumed by the plug-in instance. If this is a negative number, the
browser calls the NPP_DestroyStream function to destroy the stream. If the number

returned is smaller than the size of the buffer, the browser sends the remaining data in the

11

mDolphin Plugin Programming Guide V1.0

CHLEKAF
buffer to the plug-in through repeated calls to the NPP_WriteReady and NPP_Write
functions.

B 4. Notifies the plug-in and deletes the stream

After it sends the stream to the plug-in, the browser calls the NPP_DestroyStream
function whether or not the stream arrived successfully. After the plug-in returns from this
function, the browser deletes the NPStream object. The plug-in stores private data
associated with the stream in stream->pdata. Any resources that the plug-in allocated for
that stream should be deleted when the stream is destroyed. The browser stores private

data in stream->ndata. The plug-in should not change the value of ndata.

Note: It is not possible to send a data stream from the plug-in to the browser.

3.7Handling URLs

A plug-in can request and receive the data associated with any type of URL that the

browser can handle.

3.7.1 Retrieving data from a URL

The plug-in calls the NPN_GetURL function to ask the browser to do one of the following:
B Display data retrieved from a URL in a specified target window or frame
B Deliver the data to the plug-in instance in a new stream
If the browser cannot locate the URL or retrieve the data, it does not create a stream for
the plug-in. The developer can call the NPN_GetURLNotify function to notify the plug-in
that the data was not retrieved.
The browser calls the NPP_URLNotify function to notify the plug-in. The browser then
passes the notifyData value to the plug-in. The notifyData parameter contains the private
plug-in data passed to the corresponding call to the NPN_GetURLNotify function. The
value of notifyData may be used to track multiple requests.
The NPN_GetURLNotify function handles the URL request asynchronously. It returns
immediately and only later handles the request and calls the NPP_URLNotify function.
The plug-in must receive this notification in order to determine whether a request with a

null target failed or whether a request with a non-null target completed successfully.

3.7.2 Posting URLs

The plug-in calls the NPN_PostURL function to post data from a file or buffer to a URL.

12

mbDolphin Plug-in Programming Guide V1.0

T
After posting the data, the NPN_PostURL function either displays the server response in
the target window or delivers it to the plug-in.

The NPN_PostURLNotify function has the same capabilities as the NPN_PostURL
function, with the following exceptions:
u NPN_PostURLNotify supports specifying headers when posting a memory
buffer
B NPN_PostURLNOotify calls the NPP_URLNotifyfunction upon successful or
unsuccessful completion of the request. The NPN_PostURLNotify function is
asynchronous; it returns immediately and only later handles the request and calls
the NPP_URLNOotify function.

The example of Handling URLs and Implementing Streams see the demo in

"mdolphin/plugin_demos/pictureshow-plugin”, It have show how to post a url and receive

a streams.

13

mDolphin Plugin Programming Guide V1.0

CHIERTF

4 Plug-in API Reference Tables

The Browser Plug-in API consists of the following two parts:

B Adaptation of the Netscape Plug-in API for the mDolphin

[| Extensions
The browser and plug-ins interact with each other through two interfaces:

u NPN interface-- plug-in instances call these to communicate with the browser

B NPP interface—the browser calls these to perform operations on a plug-in

Each function in the API has the prefix NPN or NPP to indicate which interface it uses to

communicate.

4.1Adapted Netscape Plug-in API Functions

The tables in this section contain the functions adapted from the Netscape Plug-in API.

4.1.11Initialization and destruction functions
The browser calls the functions in this section to initialize or delete a plug-in

instance:

4.1.1.1 NP_Initialize

Table 4.1NP_lInitialize

Plug-in NPP — implemented by the plug-in

API Type

Syntax NPError NP_Initialize (NPNetscapeFuncs* NPN, NPPluginFuncs* NPP)
Parameters | NPNetscapeFuncs *NP: Pointer to the browser's function table.

NPPIluginFuncs *NPP: Pointer to the plug-in's function table.

14

mbDolphin Plug-in Programming Guide V1.0

CHIERTF

Returns NPError status code One of the following:

0 means NO_ERROR
1 means GENERIC_ERROR

2 means INVALID_INSTANCE_ERROR
3 means INVALID_FUNCTABLE_ERROR
4 means
MODULE_LOAD_FAILED_ERROR
means OUT_OF_MEMORY_ERROR
means INVALID_PLUGIN_ERROR
means INVALID_PLUGIN_DIR_ERROR

o N o o

means
INCOMPATIBLE_VERSION_ERROR
9 means INVALID_PARAMETER

10 means INVALID _URL

11 means FILE_NOT_FOUND

12 means NO_DATA

13 means STREAM_NOT_SEEKABLE

Description | Exchanges function tables between the browser and the plug-in.

4.1.1.2 NPP_New

Table 4.2NPP_New

Plug-in NPP — implemented by the plug-in
API Type

Syntax _NPError NPP_New(NPMIMEType pluginType, NPP instance, uint16 mode,
int16 argc, char* argn[], char* argv[], NPSavedData* saved)

Parameters | NPMIMEType pluginType The MIME type
NPP instance The plug-in instance
uint16 mode The mode Value: NP_EMBED
int16 argc Numbers of Attribute
char* argn[] Attribute of the <object> tag names
char* argv]] Attribute of the <object> tag values
NPSavedData* saved not supported

Returns NPError status code

For the status code values, see Table 4.1

15

mDolphin Plugin Programming Guide V1.0

CHIERTF

Description

Exchanges function tables between the browser and the plug-in.

4.1.1.3 NPP_Destroy

Table 4.3NPP_Destroy

Plug-in NPP — implemented by the plug-in
API Type
Syntax NPError NPP_Destroy (NPP instance, NPSavedData** save)
Parameters | NPP instance The instance to be destroyed
NPSavedData* saved not supported
Returns NPError status code
For the status code values, see Table 4.1
Description | Deletes a plug-in instance.

4.1.1.4 NPP_Shutdown

Table 4.4NPP_Shutdown

Plug-in NPP — implemented by the plug-in
API Type
Syntax void NPP_Shutdown (void)
Parameters | None
Returns None
Description | Deletes all resources allocated for the plug-in Library.

4.1.2Drawing functions

4.1.2.1 NPN_ForceRedraw
This function force to redraw all the plug-in view.

4.1.2.2 NPN_InvalidateRect
This function redrawn the plug-in's window rectangle which was gived.

4.1.2.3 NPN_InvalidateRegion
We not implemention the Region struct, so you will never to call it.

16

mbDolphin Plug-in Programming Guide V1.0

CHIERTF

4.1.2.4 NPN_SetValue
This function has an empty implementation in the browser. If called, this function does

nothing.

4.1.2.5 NPP_HandleEvent

Table 4.5NPP_HandleEvent

Plug-in NPP — implemented by the plug-in
API Type

Syntax uint16 NPP_HandleEvent (NPP instance, NPEvent* event)

Parameters | NPP instance The plug-in instance
NPEvent* event The Plug-in event

Returns Return true from NPP_HandleEvent if it has handled the event and false if it has
not

Description | NPP_HandleEvent is the only way the plug-in can receive events from its host

application.

4.1.2.6 NPP_Print
Not supported. The browser never calls this plug-in function.

4.1.2.7 NPP_SetValue
Not supported. The browser never calls this plug-in function.

4.1.2.8 NPP_SetWindow

Table 4.6NPP_SetWindow

Plug-in NPP — implemented by the plug-in
API Type
Syntax NPError NPP_SetWindow (NPP instance, NPWindow* window);
Parameters | NPP instance The plug-in instance
NPWindow *window The window parameters
Returns Returns NPError status code
For the status code values, see Table 2.
Description | Sets the parent window and the size of the plug-in.

The coordinates are always relative to the parent window.
Note: In fact, you can through the MiniGUI's message to replace using thi

function.

O

17

mDolphin Plugin Programming Guide V1.0

CHIERTF

4.1.3Stream functions

4.1.3.1 NPN_NewStream
This function has an empty implementation in the browser. If called, this function does

nothing.

4.1.3.2 NPN_DestroyStream
This function has an empty implementation in the browser, which can be called but does

nothing.

4.1.3.3 NPN_RequestRead
This function has an empty implementation in the browser. If called, this function does

nothing.

4.1.3.4 NPN_Write
This function has an empty implementation in the browser. If called, this function does

nothing.

4.1.3.5 NPP_NewStream

Table 4.7NPP_NewStream

Plug-in NPP — implemented by the plug-in
API Type

NPP_NewStream(NPP instance, NPMIMEType type, NPStream* stream,

Syntax NPBool seekable, uint16* stype)

18

mbDolphin Plug-in Programming Guide V1.0

CHIERTF

Parameters | NPP instance The plug-in instance
NPMIMEType The MIME type of the stream type
NPStream* The new stream object stream
NPBool A flag that indicates whether or not
seekable the stream is searchable.
Searchable streams are not supported. Therefore,
the flag is always set to EFalse.
uint16* stype The type of the stream.
The plug-in should set the stream type.
stream types are:
¢ NP_NORMAL,
e NP_ASFILE
) NP_ASFILEONLY
For embed system we just supported NP_NORMAL type.
NP _NORMAL T h e pl ug-1n
progressively as it arrives from the network or file syjstem
through a series of calls to the NPP_WriteReady and the
NPP_Write functions.
Returns Returns NPError status code
For the status code values, see Table 2.
Description | Notifies a plug-in instance of a new data stream.

4.1.3.6 NPP_DestroyStream

Table 4.8NPP_DestroyStream

Plug-in NPP — implemented by the plug-in
API Type
Syntax NPError NPP_DestroyStream (NPP instance, NPStream* stream, NPReason

reason)

19

mDolphin Plugin Programming Guide V1.0

CHIERTF

Parameters | NPP instance The plug-in instance

NPStream* The stream to be destroyed
NPReason The reason for destroying the stream.The reason parameter can
reason have one of the following values:

NPRES_DONE (Most common)-- ndrmal cc
data was sent to the instance.
NPRES_USER_BREAK--the user canceled the stream
NPRES_NETWORK_ERR--the stream [failed b
problems with the network, disk |/O error, lack of mempry,

or some other problem.

Returns Returns NPError status code
For the status code values, see Table 2.

Description | Destroys the stream that was previously created to stream
data to the plug-in.

4.1.3.7 NPP_StreamAsfFile
Not supported. The browser never calls this plug-in function.

4.1.3.8 NPP_Write

Table 4.9NPP_Write

Plug-in NPP — implemented by the plug-in
API Type

Syntax int_32 NPP_Write (NPP instance, NPStream* stream,int32 offset, int32 len,
void* buffer)

Parameters | NPP instance The plug-in instance
NPStream* The stream
int32 offset The offset in the stream.
int32 len The size of the new data
void* bufferters The data itself

Returns If successful, this function returns the number of bytes

consumed by the plug-in instance.
If unsuccessful, this function destroys the stream by

returning a negative value.

Description | Writes a chunk of data to the plug-in.

20

mbDolphin Plug-in Programming Guide V1.0

CHIERTF

4.1.3.9 NPP_WriteReady

Table 4.10NPP_WriteReady

Plug-in NPP — implemented by the plug-in
API Type
Syntax int32 NPP_WriteReady (NPP instance, NPStream* stream)
Parameters | NPP instance The plug-in instance
NPStream* The stream
Returns The maximum data size that the plug-in can handle.
Description | The browser calls the NPP_Write function with the amount

of data returned from the NPP_WriteReady function.

4.1.4URL functions

4.1.4.1 NPN_GetURL

Table 4.11NPN_GetURL

Plug-in NPN — implemented by the browser
API Type

Syntax NPError NPN_GetURL (NPP instance, const char* url, const char* target)
Parameters | NPP instance The plug-in instance

const char* url The URL to load

const char* target The target window
Returns NPError status code

For the status code values, see Table 2.

Description | The plug-in calls this function to request the browser to load a URL.
Note If the target window is NULL, pass the response to the plug-in.

If the target window is _parent, or _top, the browser initiates

a load request to the given URL.

4.1.4.2 NPN_GetURLNOotify

Table 4.12NPN_GetURLNotify

Plug-in NPN — implemented by the browser
API Type
Syntax NPError NPN_GetURLNOotify (NPP instance,const char* url, const char*

target, void* notifyData)

21

mDolphin Plugin Programming Guide V1.0

CHIERTF

Parameters | NPP instance The plug-in instance
const char* url The URL to load

const char” target The target window

void* notifyData The context to be returned to the plug-in with the

notification.

Returns NPError status code
For the status code values, see Table 2.

Description | The plug-in calls this function to request the browser to load a URL.
A requesting plug-in is informed when the load completes.

Note If the target window is NULL, parent, or _top, the browser initiates
a load request to the given URL. After the load is initiated, the

browser notifies the plug-in that the load was successful. There is

no way for the browser to ensure that the server received the load request.

4.1.4.3 NPN_PostURL

Table 4.13NPN_PostURL

Plug-in NPN — implemented by the browser
API Type

NPError NPN_PostURL (NPP instance, const char* url, const char* target,

Syntax const char* buf, NPBool file)

Parameters | NPP instance The plug-in instance

const char* url The URL to load

const char* The target window

target

const char* buf A buffer

NPBool file A flag indicating the contents of the buffer.
Value One of the following:

True indicates that the buffer contains a file name.
False indicates that the buffer contains the posted data.
we not support file system operate, so the NPBool fiile

value should always FALSE.

Returns NPError status code
For the status code values, see Table 2.

Description | Posts information through the browser and requests that
the result be displayed or passed to the named target

22

mbDolphin Plug-in Programming Guide V1.0

CHIERTF

window or frame. If a name is not provided, the target is

assumed to be the plug-in itself.

Note

If the target window is NULL, pass the response to the plug-in.
If the target window is _parent, or _top, the browser initiates

a load request to the given URL.

4.1.4.4 NPN_PostURLNotify

Table 4.14NPN_PostURLNotify

Plug-in
API Type

NPN — implemented by the browser

Syntax

NPError NPN_PostURL (NPP instance, const char* url, const char* target,
const char* buf, NPBool file, void* notifyData)

Parameters

NPP instance The plug-in instance

const char* url The URL to load

const char* The target window

target

const char* buf A buffer

NPBool file A flag indicating the contents of the buffer.
Value One of the following:

True indicates that the buffer contains a file name.
False indicates that the buffer contains the posted data.
we not support file system operate, so th

file value should always FALSE.

void* notifyData The context to be returned to the plug-in with the notificatio.

Returns

NPError status code
For the status code values, see Table 2.

Description

The plug-in calls this function to request the browser to
post to a URL. The browser informs the plug-in when the

load request is complete.

Note

If the target window is NULL, pass the response to the plug-in.
If the target window is _parent, or _top, the browser initiates a

load request to the given URL.

23

e NPBool

mDolphin Plugin Programming Guide V1.0

e
4.1.4.5 NPP_URLNOotify

Table 4.15NPN_PostURLNotify

Plug-in NPN — implemented by the browser
API Type
Syntax NP_Error NPP_URLNotify (NPP instance, const char* url, const char* target,
void* notifyData)
Parameters | NPP The plug-in instance
instance
const char URL of the NPN_GetURLNOotify function or of the
url NPN_PostURLNotify function request
const char® Reason code for completion of the request.

target Values One of the following:
NPRES_DONE: Normal completion; all data was sent tq the
instance. This is the most common value.
NPRES_USER_BREAK: The usef canc
directly.
NPRES_NETWORK_ERR: The stream fail
problems with the network, disk 1/O error, lack of memory, |or

some other problem.

void* Context to be returned to the plug-in with the notificatio.
notifyData
Returns NPError status code

For the status code values, see Table 2.

Description | Notifies the instance of the completion of a URL request made by
the NPN_GetURLNotify function or the NPN_PostURLNotify function.

4.1.5Memory functions

4.1.5.1 NPN_MemAlloc

Table 4.16NPN_MemAlloc

Plug-in NPN — implemented by the browser
API Type
Syntax void* NPN_MemAlloc (uint32 size)

24

mbDolphin Plug-in Programming Guide V1.0

CHIERTF

Parameters | uint32 size The desired memory size

Returns The allocated memory.
If this function fails to complete, it returns NULL.

Description | Allocates memory directly from the operating system on behalf of the plug-in.

4.1.5.2 NPN_MemFlush
This function has an empty implementation in the browser. If called, this function d

nothing.

4.1.5.3 NPN_MemFree

Table 4.17NPN_MemFree

Plug-in NPN — implemented by the browser
API Type
Syntax void NPN_MemFree (void* ptr)
Parameters | void* ptr A pointer to the memory to be freed.
Returns None.

Description | Frees memory that was previously allocated by the browser.

4.1.6Utility functions

4.1.6.1 NPN_ReloadPlugins
This function has an empty implementation in the browser. If called, this function does

nothing.

4.1.6.2 NPN_Status

Table 4.18NPN_Status

Plug-in NPN — implemented by the browser
API Type
Syntax void NPN_Status (NPP instance, const char* message)
Parameters | NPP instance The plug-in instance.
const char® message The message to display
Returns None.

Description | Returns the current browser status. Displays a small
message window.

25

mDolphin Plugin Programming Guide V1.0

CHIERTF

4.1.6.3 NPN_UserAgent

Table 4.19NPN_UserAgent

Plug-in NPN — implemented by the browser

API Type
Syntax const char* NPN_UserAgent(NPP instance)
Parameters | NPP instance The plug-in instance.
Returns The User Agent string configured in the system.

Description | Returns the currently configured user agent to the plug-in.

4.1.6.4 NPN_Version
This function has an empty implementation in the browser. If called, this function does

nothing.

4.1.7Java communication functions

The Browser Plug-in APl does not support Java communication functions.

4.2Extensions

4.2.1mdolphin_register_plugin

Table 4.20 mdolphin_register_plugin

Plug-in NPN — implemented by the browser
API Type

Syntax HPGN mdolphin_register_plugin(const PLUGIN_REGISTER *RegPgn)

Parameters | Const PLUGIN REGISTER *RegPgn The plug-in register struct.

Returns NULL on fail, non-NULL plugin's handle on success.

Description | Register a plugin type on mdolphin.

4.2.2mdolphin_unregister_plugin

Table 4.21mdolphin_unregister_plugin

Plug-in NPN — implemented by the browser

26

mbDolphin Plug-in Programming Guide V1.0

CHIERTF

API Type
Syntax void mdolphin_unregister_plugin (HPGN plugin)
Parameters | HPGN plugin The plug-in‘s handle.
Returns None.
Description | Unregister a plugin type.

4.2.3mdolphin_get_plugin_counts

Table 4.22mdolphin_get_plugin_counts

Plug-in NPN — implemented by the browser
API Type
Syntax :Jnlllsc;?:lfi‘rj_lgtat_plugin_counts(void)
Parameters | None.
Returns The number of the plugins.
Description | The numbers of registered plugins in mdolphin.

4.2.4mdolphin_get_plugin_from_mimetype

Table 4.23mdolphin_get_plugin_counts

Plug-in NPN — implemented by the browser

API Type
Syntax HPGN mdolphin_get_plugin_from_mimetype(const char * mimeType)
Parameters | const char *mimeType The mime type which want to support.
Returns NULL on fail ,non-NULL plugin's handle on success.
Description | Find the registed plugin which support the mimetype.

4.2.5mdolphin_get_plugin_info

Table 4.24mdolphin_get_plugin_info

Plug-in NPN — implemented by the browser

API Type

Syntax BOOL mdolphin_get_plugin_info(HPGN plugin, PLUGIN_INFO * pluginfo)
Parameters | HPGN plugin The plugin's handle.

PLUGIN_INFO * pluginfo The struct to store the plugin's info.

27

mDolphin Plugin Programming Guide V1.0

CHIERTF

Returns TRUE on success, FALSE on error.

Description | Get the plugin is info,and put it in the struct of Plugininfo.

4.2.6mdolphin_get_plugin_info_by_index

Table 4.25mdolphin_get_plugin_info_by_index

Plug-in NPN — implemented by the browser
API Type
Syntax BOOL mdolphin_get__plugin_info_by_index(unsigned int index,
PLUGIN_INFO * pluginfo)
Parameters | unsigned int index. The index of plugin which want to get info (0
base).

PLUGIN_INFO * pluginfo The struct to store the plugin's info.

Returns TRUE on success, FALSE on error.

Description | Get the plugin's info by the index.

4.3Structures

4.3.1NPByteRange

This structure is not supported in mDolphin.

4.3.2NPEmbedPrint

This structure is not supported in mDolphin.

4.3.3NPFullPrint

This structure is not supported in mDolphin.

4.3.4NPP
Table 4.26NPP structure
Syntax :ypedef struct _NPP
void* pdata;
void* ndata;
} NPP_t;

28

mbDolphin Plug-in Programming Guide V1.0

CHIERTF

Parameters | void* A private value that a plug-in can use to store a pointer to an
pdata internal data structure associated with the instance. The

browser does not modify this value.

void* A private value that the browser uses to store data associated
ndata with the plug-in instance. The plug-in should not modify this
value.

Description | The browser creates an NPP structure for each plug-in instance and passes a
pointer to it to the NPP_New function. This pointer identifies the instance on
which API calls should operate and represents the opaque instance handle of a

plug-in. NPP contains private instance data for both the plug-in and the browser.

The NPP_Destroy function informs the plug-in when the NPP inst
about to be deleted. After this call returns, the NPP pointer i

valid.

hnce is

s no longe

4.3.5NPPrint

This structure is not supported in mDolphin.

4.3.6NPRect
This structure is define as MiniGUI 's RECT in mDolphin.

4.3.7NPSavedData

This structure is not supported in mDolphin.

4.3.8NPStream

Table 4.27NPStream structure

Syntax typedef struct _NPStream

{
void* pdata;
void* ndata;
const char* url;
uint32 end;
uint32 lastmodified;
void* notifyData;
const char* headers;

} NPStream;

29

mDolphin Plugin Programming Guide V1.0

CHIERTF

Parameters

void* pdata A private value that a plug-in can use to store a pointer to
an internal data structure associated with the instance. The
browser does not modify this value.

void* ndata A private value that the browser uses to store data

associated with the plug-in instance. The plug-in should not

modify this value.

const char* url

The URL from which the data in the stream is read or to

which the data is written.

h,

servers (

uint32 end The offset, in bytes, of the end of the stream. This is
equivalent to the length of the stream in bytes.
This value can be zero for streams of unknown lengt
such as streams returned from older FTP
generated “on the fly” by CGI scripts.
uint32 The time at which the data in the URL was last modified (if
lastmodified applicable), measured in seconds since 12:00 midnight
GMT, January 1, 1970.
void* This parameter is used only for streams generated in
notifyData response to a NPN_GetURLNotify function or a

NPN_PostURLNotify function request.

Value:

NPN_GetURLNoOtify function'
value

NPN_PostURLNotify function's

value null for other streams

s noti

notify!

const char*

headers

Response headers from host.
E X i s t

NPVERS_HAS_RESPONSE_HEADERS.

Used for HTTP only; NULL for non
from

NPP_NewStream oRlgricdisshould cd
data

before storing it. Includes HTTP status line and all
headers, preferably verbatim as received from server,
headers formatted as in HTTP ("Header: Value"), and

newlines (\n, NOT \r\n) separbheimgnla

s
FHTTP. |
bpy this

by \n\0

(NOT \n\n\0).
30

mbDolphin Plug-in Programming Guide V1.0

CHIERTF

Description | The browser allocates and initializes the NPStream object and passes it to the

plug-in instance as a parameter to the NPP_NewStream function. The browser

cannot delete the object until after it calls the NPP DestroyStream function.

4.3.9NPWindow

Table 4.28NPWindow structure

Syntax typedef struct _NPWindow

Syntax (

void* window;

int32 x;

int32 vy;

uint32 width;

uint32 height;

NPRect clipRect;

void * ws_info;

NPWindowType type;
} NPWindow;

31

mDolphin Plugin Programming Guide V1.0

CHIERTF

Parameters | void* window A handle to a native window element.
int32 x The x coordinate of the top left corner of the plug-in
relative to the page. The plug-in should not modify
this value.
int32 y The y coordinate of the top left corner of the plug-in
relative to the page. The plug-in should not modify
this value.
uint32 width The width of the plug-in area. The plug-in should not
modify this value.
uint32 height The height of the plug-in area. The plug-in should not
modify this value.
NPRect clipRect Clipping rectangle in port coordinates, not support in
mDolphin.
NPWindowType type Specifies whether the NPWindow instance represents
a window or a drawable.
Values:
N P W indowT Ty ope W indo w
window field holds a platform-specific handle|to
a window.
The plug-in is considered windowed.
2 NPWindowTypeDrawable: Not supported.
In mDolphin, the NPWindowType type is always
NPWindowTypeWindow.
Description | The NPWindow structure represents the native window. It contains information
about coordinate position, size, and some platform-specific information.
A windowed plug-in is drawn into a ndtive w
a native window) on a Web page. For windowed plug-ins, the browser calls
the NPP_SetWindow function with an NPWindow structure that represents
a drawable (a pointer to an NPWindow allocated by the hrowser).

window is valid until NPP_SetWindow is called 4

window or the instance is destroyed.

gain wit

32

mbDolphin Plug-in Programming Guide V1.0

CHIERTF

5 Hello World Plug-in

This chapter will show how to write a simple plug-in on PC. We will write a plug-in which

will do nothing, just show "Hello World mDolphin plug-in" on the plug-in window.

5.1Default_Plug-in Demo

In mdolphin/plugin_demos directory, default_plugin demo was provided as a template
to describe how to write new plug-ins.

We can run the following command to copy the default_plugin first.

cp default plugin/ hello plugin -r I

5.2 Implementing Hello World Plug-in

Enter the_hello_plugin/src directory.

5.2.1Modifing Project Name

Next, modify the Makefile.am file as follows:

lib LTLIBRARIES = libmd hello plugin.la

libmd hello plugin la SOURCES = \

Then the plug-in's library name is "libmd_hello_plugin.so”.

5.2.2Define Plug-in Name and MIME Type
We use macro to control the plug-in name and the supported MIME type in mdplugin.h
file.

You should modify the mdplugin.h as follows:

#define P_NAME (FUNCTION NAME) hello plugin pr ##FUNCTION NAME
#define PLUGIN_ NAME "helloworld plugin"

#define PLUGIN DESCRIPTION "helloworld plugin, the first plugin of mDolphin"
#define MIME_TYPES HANDLED "x-minigui/helloworld::"

Note:
® About P_NAME
As everyone knows, some embeded systems don’t support the dynamic library, just
support static library. And if using static library, functions in plug-in libraries can not have
the same name, So we use P_NAME to difference the defined plugin function's name.
B How to compose the MIME_TYPES_HANDLED strings

33

mDolphin Plugin Programming Guide V1.0

T

The string is a list of semicolon separated mimetype specifications. Each mimetype
specification consists of three colon separated components. The first component is the
mime type itself, the second is a comma separated list of file extensions and the last part
is a description string.

For example:

"application/x-typel:extl:A supported mime type;application/x-type2:ext2,ext3,ext4:Another
supported mime type"

5.2.3Implementing Hello World Plug-in

Plug-in was implemented in_plugin.cpp and plugin.h .

5.2.3.1: Initializing the Plug-in
We can add the plug-in initialization codes at function P_NAME(NPP_lInitialize)() in

plugin.cpp.

Here, we print "the hello world plugin is initalized" as the initialization codes.

NPError
P NAME (NPP_Initialize) ()
{

printf "the hello world plugin is initalized\n");
return NPERR NO ERROR;

5.2.3.2: Shutdown the Plug-in
We can add the plugin shutdown codes at function_.P_NAME(NPP_Shutdown)()_in

plugin.cpp .
Here, we print "the hello world plugin is shutdown" as the shutdown codes.

void
P NAME (NPP_Shutdown) ()
{

printf ("the hello world plugin is shutdown\n");

}

5.2.3.3: Initializing a Plug-in Instance
We can add some codes at function P_NAME(mgPlugininstance)

(mgPluginCreateData* data) in plugin.cop when a new plug-in instance is created.

Here, we just print "A new hello world plugin was created"

P NAME (mgPluginInstance) :: P _NAME (mgPluginInstance) (mgPluginCreateData* data)
:_instance (data->instance)

, m_hWnd (0)

{

printf("A new hello world plugin was created \n");

}

5.2.3.4: Destroying a Plug-in Instance
We can add some codes at function ~P_NAME(mgPlugininstance) () in plugin.cop when

34

mbDolphin Plug-in Programming Guide V1.0

AT

the plug-in instance is destroyed.

Here, we just print "A hello world plug-in was instance destroy"
/// Destructor

P _NAME (mgPluginInstance):: ~P NAME (mgPluginInstance) ()

{

printf ("A hello world plugin was instance destroy"):;
}

5.2.3.5: Handle the Event of Plug-in
After the plug-in instance is created, we can handle the event at function HandleEvent.

The plug-in events are like MiniGUI messages, so we can develop a mDolphin plug-in like
a MiniGUI's application.

In order to show "Hello World mDolphin plug-in" in the plug-in window, we should handle
the MSG_PAINT event as follows:

intl6é P _NAME (mgPluginInstance) : :HandleEvent (HWND hWnd, int message, WPARAM wParam, LPARAM
lParam)

{

switch (message)

{
case MSG_PAINT:
RECT rect;
GetClientRect (hWnd, &rect);
HDC hdc;
hdc = BeginPaint (hWnd) ;
DrawText (hdc, "Hello World mDolphin plug-in",
-1, &rect, DT CENTER);
EndPaint (hWnd, hdc):;
return 1;

case MSG CREATE:
m_hWnd = hWnd;

break;
}
return 0; //return 1 : handled message
//return 0 : not handled message

}

Note: the HandleEvent function return 1 show it had handled the message, or will return 0;

5.3Building and Installing Plug-in

5.3.1Building Hello World Plug-in

You can run the following command to build hello world plug-in.

cd hello plugin
./configuer

make

5.3.2Installing Plug-in

Take PC demo for example. After building plug-in successfully, you can find the plug-in

library in src/.libs/ directory.

35

mDolphin Plugin Programming Guide V1.0

CHLEK AT
Copy libmd_hello_plugin.so to app_demos/testpc/.mDolphin/plugins/ directory for finishing
plug-in installation.

5.4Write Test Html for Hello World Plug-in

Because "x-minigui/helloworld” MIME type was setted for the hello word plug-in, we

should set the embed tag's type is "x-minigui/helloworld".

<html>

<head> hello world </head>
<body>

<embed src=""
width="300"
height="200"

type="x-minigui/helloworld"> </embed>
</body>

</html>

36

